基本上庞学林问什么,他就解释什么。
时间一分一秒过去,不知不觉,又过了一个多小时。
庞学林终于图穷匕见:“你这里由一个紧致无边的n维流形M的同调群Hn(M,Z)=0,推出M是不可定向的,然后我们由定理4.6.7可知,所有偶数维的射影空间都是不可定向的,它们的定向二重覆盖空间是同维数的球面,那么我想问一下,定向二重覆盖为环面T^2的克莱因瓶,它的空间曲率是黎曼流形上的光滑函数吗?”
庞学林这话一出口,不仅佩雷尔曼呆滞了,就连望月新一也呆住了。
这是一个极为细微的逻辑漏洞,从初始设定一直到四维克莱因瓶的定向问题,相当于霍奇猜想证明全过程的基础。
假如这一段出现问题了,那么基本上意味着整个证明过程有着重大缺陷。
但望月新一震惊的并非是这一点。
而是庞学林竟然能够在这么短的时间内,就察觉到了如此细微的逻辑漏洞。
要知道佩雷尔曼的手稿一共三十多页,他还省略了很多环节,如果把这部分手稿转换成论文,至少还要再补充一半以上的内容。
之前望月新一花了将近五小时的时间,才算将这篇论文细细读完。
要说理解的话,望月新一只能说看明白了佩雷尔曼的整体证明思路,对里面的一些细节,他还要花几天时间研究。
而庞学林在读完这篇论文的同时,竟然在如此短的时间内,完全理解了佩雷尔曼的证明思路,甚至还发现了其中存在的非常细微的漏洞。
这里面所展现的惊人思维能力和数学直觉,有些超乎望月新一的想象。
一般情况下,像佩雷尔曼和望月新一这样的顶尖数学家之间,单从思维能力而言,其实差距并不大。
真正体现数学家之间差距的是看对方是否具有创造性思维,能不能在别人想不到的领域开辟全新的战场。
而这一点,就需要长时间的积累以及偶然间的灵光一闪了。
望月新一原以为,自己和庞学林之间就算存在差距,但是至少在逻辑思维能力上,不存在质的区别。
但今天,庞学林的表现却完全超出了他的想象。
这到底是哪来的怪物?
佩雷尔曼也意识到了这一点,不过此时的他倒没想那么多。
他从庞学林手中拿过论文的手稿,又从头到尾推演了一遍。
最终的结果证明,庞学林是正确
本章未完,请点击下一页继续阅读!